Perkin 1 Abstracts: Natural Product Synthesis

Andrew Gunn, Jacqueline E. Milne, Marcel de Puit and Duncan McArthur

- ^a Department of Chemistry, Leeds University, Leeds, UK LS2 9JT
- ^b Department of Chemistry, Glasgow University, Glasgow, UK G12 8QQ

Perkin 1 Abstracts: Natural Product Synthesis aims to highlight syntheses that have been recently published. It includes brief descriptions of biological activity and key steps. A more comprehensive list of Natural Product syntheses and isolations can be found in Natural Product Updates.

(+)-Altohyrtin A (Spongistatin 1)	OH : A
Biological activity: (a) in vitro antitumor activity; (b) $IC_{50} = 0.03$ nM; (c) inhibits tubulin polymerisation.	HO, O H
Key steps: various boron-mediated aldol condensations.	HO HO OME
I. Paterson, D. YK. Chen, M. J. Coster, J. L. Aceña, J. Bach, K. R. Gibson, L. E. Keown, R. M. Oballa, T. Trieselmann, D. J. Wallace, A. P. Hodgson and R. D. Norcross, <i>Angew. Chem., Int. Ed.</i> , 2001, 40 , 4055.	Aco OH OAC
(+)-Ambruticin S	
Biological activity: antifungal.	
Key steps: (a) asymmetric cyclopropanation; (b) Kocienski–Julia olefination; (c) ring closing metathesis reaction; (d) 2,3-sigmatropic rearrangement of an allyloxymethyllithium reagent; classical Julia olefination.	CO ₂ H H H O O O O O O O O O O O O O O O O O
T. A. Kirkland, J. Colucci, L. S. Geraci, M. A. Marx, M. Schneider, D. A. Kaelin and S. F. Martin, <i>J. Am. Chem. Soc.</i> , 2001, 123 , 12432.	
(S)-Camptothecin	
Biological activity: (a) isolated from Camptotheca acuminata; (b) important lead compound for the preparation of selective anticancer drugs; (c) cytotoxicity attributed to a mechanism of action involving DNA and topoisomerase I.	НОлдо
Key steps: Heck reaction.	N N O
D. L. Comins and J. M. Nolan, Org. Lett., 2001, 3, 4255.	
(-)-Colombiasin A	
Biological activity: not reported.	<u> </u>
Key steps: (a) two p -quinone Diels–Alder reactions one of which is asymmetric, being based on an (S)-BINOL–TiCl $_2$ catalyst; (b) C -allylation of an enolate under Pd($_0$) catalysis.	H
K. C. Nicolaou, G. Vassililkogiannakis, W. Mägerlein and R. Kranich, <i>Chem. Eur. J.</i> , 2001, 7, 5359.	
Cystothiazole A	
Biological activity: (a) isolated from the myxobacterium culture broth of Cystobacter fuscus; (b) antifungal activity against the phytopathogenic fungus Phytophthora capsici; (c) exhibits no effect on bacterial growth; (d) in vitro cytotoxicity towards human colon carcinoma HCT-116 and human leukemia K562.	MeO ₂ C OMe
$\label{eq:Key steps:} \textit{(a) (E)-selective Horner-Emmons olefination; (b) asymmetric Evans aldol reaction.}$	N S

D. R. Williams, S. Patnaik and M. P. Clark, J. Org. Chem., 2001, 66, 8463.

(+)-Hypusine

Biological activity: (a) isolated from extracts of bovine brain; (b) precursor protein of eukaryotic initiation factor 5A (eIF-5A) undergoes posttranslational modification in growing cells to form hypusine; (c) eIF-5A plays a key role in the replication of HIV-1.

Key steps: Wittig reaction of (triphenylphosphoranylidene)acetonitrile with a lactone carbonyl group.

H₂N CO₂H NH₂

R. P. Jain, B. K. Albrecht, D. E. DeMong and R. M. Williams, *Org. Lett.*, 2001, 3,

(-)-Laulimalide

Biological activity: cytotoxicity against several human tumour cell lines with $\rm IC_{50}$ 10-50 ng ml $^{-1}$.

Key steps: (a) ring closing metathesis to generate both dihydropyran rings; (b) Sharpless asymmetric epoxidation; (d) intramolecular electrophilic addition of an allylstannane to an oxonium ion generated from an aldehyde acetal derived from (R,R)-(+)-pentane-2,4-diol.

V. S. Enev, H. Kaehlig and J. Mulzer, J. Am. Chem. Soc., 2001, 123, 10764.

(-)-Laulimalide

Biological activity: (a) isolated from the marine sponge Cacospongia mycofijiensis, the Indonesian sponge Hyattella sp. and the Okinawan sponge Fasciospongia rimosa; (b) antitumour activity against numerous NCI cell lines, P388, A549, HT29, MEL28 and KB cell lines (IC $_{50} = 10$ –50 ng mL $^{-1}$); (c) highly potent against the multidrug resistant cell line SKVLB-1 (IC $_{50} = 1.2~\mu M$).

Key steps: (a) two Julia olefination reactions; (b) intramolecular Horner–Emmons olefination; (c) Yamaguchi macrolactonisation; (d) ring-closing olefin metathesis to construct both dihydropyran rings.

A. K. Ghosh, Y. Wang and J. T. Kim, J. Org. Chem., 2001, 66, 8973.

(±)-Lennoxamine

Biological activity: not reported.

Key steps: intramolecular electrophilic aromatic substitution reaction of a 2-amidoacrolein.

J. R. Fuchs and R. L. Funk, Org. Lett., 2001, 3, 3923.

(±)-Martinellic acid

Biological activity: (a) isolated from Martinella iquitosensis roots; (b) non-peptide antagonists for the bradykinin B_1 and B_2 receptors.

Key steps: (a) reaction of an aniline with a Meldrum's acid-activated vinylcyclopropane to give a vinyl pyrrolidinone; (b) condensation of an aldehyde with N-benzylglycine to form an azomethine ylide that cyclises to give a tetracyclic lactam; (c) selective reduction of a tetracyclic lactam to an amino alcohol with LiBH₄ and MeOH; (d) reaction of a cyanamide with 3-methylbut-2-en-1-amine in hexafluoropropan-2-ol to form a guanidine.

B. B. Snider, Y. Ahn and S. M. O'Hare, Org. Lett., 2001, 3, 4217.

Nakijiquinone A

Biological activity: (a) cytotoxic against L 1210 murine leukemia cells and KB human epidermoid carcinoma cells; (b) inhibitor of the Her-2/Neu receptor tyrosine kinase.

Key steps: (a) reductive alkylation of a Wieland–Miescher-type enone with a tetramethoxyaryl bromide; (b) oxidative conversion of an aryl ring into a *p*-quinoid system; (c) regioselective saponification of one of two vinylogous esters.

P. Stahl, L. Kissau, R. Mazitschek, A. Huwe, P. Furet, A. Giannis and H. Waldmann, *J. Am. Chem. Soc.*, 2001, **123**, 11586.

(–)-Neplanocin A	
Biological activity: (a) isolated from Ampullariella regularis; (b) exhibits	
S-adenosylhomocystein hydrolase inhibitory activity.	/==N
Key steps: (a) (E)-selective Horner–Emmons olefination; (b) lithium thiolate-initiated stereoselective intramolecular Michael–aldol tandem cyclisation.	HO NH ₂
	HO OH N N
	но он ∵∕
M. Ono, K. Nishimura, H. Tsubouchi, Y. Nagaoka and K. Tomioka, J. Org.	
Chem., 2001, 66, 8199.	
(-)-Octalactin A	
Biological activity: (a) anticancer agent; (b) potent toxicity against certain human colon cancer cell lines.	0
Key steps: ring-closing metathesis.	HO _{''',}
	O O OH
	10111
	1 1 2
K. R. Buszek, N. Sato and Y. Jeong, Tetrahedron Lett., 2002, 43, 181.	
(11S,12S)-Posticlure	
Biological activity: (a) isolated from the tussock moth Orgyia postica; (b) female	
sex pheromone.	
Key steps: Sharpless asymmetric dihydroxylation.	H a second
	H, , , , , , , , , , , , , , , , , , ,
S. Muto and K. Mori, Eur. J. Org. Chem., 2001, 4635.	
Rhizoxin D	
Biological activity: (a) isolated from Rhizopus chinensis; (b) exhibits antitumour activity.	
Key steps: (a) Horner–Wadsworth–Emmons olefination; (b) intramolecular Stille	но.,,
reaction.	NO.,,,
	N N N N N N N N N N N N N N N N N N N
I C M . I II C D I I I D C . I	,,,,,, ö
I. S. Mitchell, G. Pattenden and J. P. Stonehouse, <i>Tetrahedron Lett.</i> , 2002, 43 , 493.	Me OMe
ent-(-)-Roseophilin	
Biological activity: antitumour agent isolated from Streptomyces griseoviridis. The enantiomer of the natural product was synthesised. It was 2–10 fold more potent	OMe
than natural (+)-roseophilin.	O Nie
Key steps: (a) azadiene inverse demand Diels–Alder reaction to form a 1,2-diazine	CI
followed by reductive ring contraction to generate the pyrrole; (b) ring closing metathesis to generate the macrocycle; (c) 5-exo-trig acyl radical-alkene cyclisation	
reaction to construct a fused pyrrole.	HN.//
D. L. Boger and J. Hong, <i>J. Am. Chem. Soc.</i> , 2001, 123 , 8515.	
(±)-Sacacarin	
Biological activity: isolated from the bark of a Brazilian tree used in folk medicine	
for the treatment of digestive upset.	,
Key steps: (a) double Michael reaction; (b) Pinner reaction; (c) Dieckmann	
reaction.	
	0, ,,,

R. B. Grossman and R. M. Rasne, *Org. Lett.*, 2001, **3**, 4027.

Slagenin B

Biological activity: (a) isolated from the Okinawan sponge Agelas nakamurai; (b) preliminary biological tests have shown that slagenins exhibit pharmacologically useful activities

Key steps: preparation of the cis-fused tetrahydrofuro[2,3-d]imidazolidin-2-one skeleton via condensation of a glyoxal hydrate and urea.

Br H N NH OME

B. Jiang, J.-F. Liu and S.-Y. Zhao, Org. Lett., 2001, 3, 4011.

Sphingofungins E and F

Biological activity: (a) isolated from the fermentation of *Paecilomyces variotii*; (b) antifungal; (c) block the biosynthesis of sphingolipids, leading to apoptosis in both yeast and mammalian cells.

Key steps: Pd(0)-catalysed asymmetric allylic alkylation of a gem-diacetate with a silvlazlactone.

OH OH CO₂H

CO₂H

NH₂
OH R

Sphingofungin E; $R = CH_2OH$ Sphingofungin F; $R = CH_3$

B. M. Trost and C. Lee, J. Am. Chem. Soc., 2001, 123, 12191.

(±)-Stemonamide

Biological activity: (a) isolated from the roots of Stemona japonica; (b) alkaloids from Stemona plants have been used in Chinese and Japanese folk medicine as cough-relief agents and insecticides.

 $Key\ steps:$ (a) addition of a silyloxyfuran to an N-acyliminium ion; (b) aldol spirocyclisation.

O O OMe

A. S. Kende, J. I. M. Hernando and J. B. J. Milbank, Tetrahedron, 2002, 58, 61.

Teichoplanin aglycone

Biological activity: antibiotic

Key steps:(a) asymmetric catalytic hydrogenation; (b) Cu(OAc)₂ mediated diaryl ether synthesis from a phenol and an arylboronic acid; (c) diaryl ether synthesis via cyclisation of a phenol onto an o-fluoronitroarene

D. A. Evans, J. L. Katz, G. S. Peterson and T. Hintermann, *J. Am. Chem. Soc.*, 2001, **123**, 12411.

Mehn HO OH OH

(+)-Zampanolide

Biological activity: cytotoxic against several human cancer lines.

Key steps: (a) asymmetric allylboration; (b) Petasis–Ferrier rearrangement to generate the oxacycle; (c) Kocienski–Julia olefination; (c) Curtius rearrangement to generate the N-acyl aminal.

A. B. Smith, I. G. Safonov and R. M. Corbett, J. Am. Chem. Soc., 2001, 123, 12426.

(S)-Zearalane

 $\it Biological\ activity:\ (a)\ estrogenic;\ (b)\ anabolic;\ (c)\ anthelminthic;\ (d)\ immunomodulator.$

Key steps: Pd-catalysed cross-coupling of an arene trifluoromethanesulfonate with a 9-alkyl-9-borabicyclo[3.3.1]nonane derivative.

F. Bracher and J. Krauß, Eur. J. Org. Chem., 2001, 4701.